On the role of TRPC1 in control of Ca2+ influx, cell volume, and cell cycle.

نویسندگان

  • C P Madsen
  • T K Klausen
  • A Fabian
  • B J Hansen
  • S F Pedersen
  • E K Hoffmann
چکیده

Ca(+) signaling plays a crucial role in control of cell cycle progression, but the understanding of the dynamics of Ca(2+) influx and release of Ca(2+) from intracellular stores during the cell cycle is far from complete. The aim of the present study was to investigate the role of the free extracellular Ca(2+) concentration ([Ca(2+)](o)) in cell proliferation, the pattern of changes in the free intracellular Ca(2+) concentration ([Ca(2+)](i)) during cell cycle progression, and the role of the transient receptor potential (TRP)C1 in these changes as well as in cell cycle progression and cell volume regulation. In Ehrlich Lettré Ascites (ELA) cells, [Ca(2+)](i) decreased significantly, and the thapsigargin-releasable Ca(2+) pool in the intracellular stores increased in G(1) as compared with G(0). Store-depletion-operated Ca(2+) entry (SOCE) and TRPC1 protein expression level were both higher in G(1) than in G(0) and S phase, in parallel with a more effective volume regulation after swelling [regulatory volume decrease (RVD)] in G(1) as compared with S phase. Furthermore, reduction of [Ca(2+)](o), as well as two unspecific SOCE inhibitors, 2-APB (2-aminoethyldiphenyl borinate) and SKF96365 (1-(β-[3-(4-methoxy-phenyl)propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride), inhibited ELA cell proliferation. Finally, Madin-Darby canine kidney cells in which TRPC1 was stably silenced [TRPC1 knockdown (TRPC1-KD) MDCK] exhibited reduced SOCE, slower RVD, and reduced cell proliferation compared with mock controls. In conclusion, in ELA cells, SOCE and TRPC1 both seem to be upregulated in G(1) as compared with S phase, concomitant with an increased rate of RVD. Furthermore, TRPC1-KD MDCK cells exhibit decreased SOCE, decreased RVD, and decreased proliferation, suggesting that, at least in certain cell types, TRPC1 is regulated during cell cycle progression and is involved in SOCE, RVD, and cell proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells.

Caveolin-1 associates with store-operated cation channels (SOC) in endothelial cells. We examined the role of the caveolin-1 scaffolding domain (CSD) in regulating the SOC [i.e., transient receptor potential channel-1 (TRPC1)] in human pulmonary artery endothelial cells (HPAECs). We used the cell-permeant antennapedia (AP)-conjugated CSD peptide, which competes for protein binding partners with...

متن کامل

STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding.

Early epithelial restitution is an important repair modality in the gut mucosa and occurs as a consequence of epithelial cell migration. Canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOCs) in intestinal epithelial cells (IECs) and regulates intestinal restitution, but the exact upstream signals initiating TRPC1 activation after mucosal injury remai...

متن کامل

Changes in expression of klotho affect physiological processes, diseases, and cancer

Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...

متن کامل

Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation.

Basic fibroblast growth factor (bFGF) and its major receptor FGF receptor-1 (FGFR-1) play an important role in the development of the cortex. The mechanisms underlying the mitogenic role of bFGF/FGFR-1 signaling have not been elucidated. Intracellular Ca2+ concentrations ([Ca2+]i) in proliferating cortical neuroepithelial cells are markedly dependent on Ca2+ entry (Maric et al., 2000a). The abs...

متن کامل

Ca2+ influx via TRPC channels induces NF-kappaB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells.

NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 303 6  شماره 

صفحات  -

تاریخ انتشار 2012